Math 221: LINEAR ALGEBRA

Chapter 2. Matrix Algebra
 §2-4. Matrix Inverses

Le Chen ${ }^{1}$
Emory University, 2021 Spring

(last updated on 02/01/2021)

The Identity and Inverse Matrices

Finding the Inverse of a Matrix

Properties of the Inverse

Inverse of Transformations

The Identity and Inverse Matrices

Finding the Inverse of a Matrix

Properties of the Inverse

Inverse of Transformations

The Identity and Inverse Matrices

The Identity and Inverse Matrices

Definition

For each $\mathrm{n} \geq 2$, the $\mathrm{n} \times \mathrm{n}$ identity matrix, denoted I_{n}, is the matrix having ones on its main diagonal and zeros elsewhere, and is defined for all $\mathrm{n} \geq 2$.

The Identity and Inverse Matrices

Definition

For each $\mathrm{n} \geq 2$, the $\mathrm{n} \times \mathrm{n}$ identity matrix, denoted I_{n}, is the matrix having ones on its main diagonal and zeros elsewhere, and is defined for all $\mathrm{n} \geq 2$.

Example

$$
\mathrm{I}_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \mathrm{I}_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Definition

Let $\mathrm{n} \geq 2$. For each $\mathrm{j}, 1 \leq \mathrm{j} \leq \mathrm{n}$, we denote by $\overrightarrow{\mathrm{e}}_{\mathrm{j}}$ the j th column of I_{n}.

Definition

Let $\mathrm{n} \geq 2$. For each $\mathrm{j}, 1 \leq \mathrm{j} \leq \mathrm{n}$, we denote by $\overrightarrow{\mathrm{e}}_{\mathrm{j}}$ the $\mathrm{j}^{\text {th }}$ column of I_{n}.

Example

When $\mathrm{n}=3, \overrightarrow{\mathrm{e}}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \overrightarrow{\mathrm{e}}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \overrightarrow{\mathrm{e}}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.

Theorem

Let A be an $\mathrm{m} \times \mathrm{n}$ matrix. Then $\mathrm{AI}_{\mathrm{n}}=\mathrm{A}$ and $\mathrm{I}_{\mathrm{m}} \mathrm{A}=\mathrm{A}$.

Theorem

Let A be an $\mathrm{m} \times \mathrm{n}$ matrix. Then $\mathrm{AI}_{\mathrm{n}}=\mathrm{A}$ and $\mathrm{I}_{\mathrm{m}} \mathrm{A}=\mathrm{A}$.

Proof.

The (i, j)-entry of AI_{n} is the product of the $\mathrm{i}^{\text {th }}$ row of $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$, namely $\left[\begin{array}{llllll}a_{i 1} & a_{i 2} & \cdots & a_{i j} & \cdots & a_{i n}\end{array}\right]$ with the $\mathrm{j}^{\text {th }}$ column of I_{n}, namely $\overrightarrow{\mathrm{e}}_{\mathrm{j}}$. Since $\overrightarrow{\mathrm{e}}_{\mathrm{j}}$ has a one in row j and zeros elsewhere,

$$
\left[\begin{array}{llllll}
a_{i 1} & a_{i 2} & \cdots & a_{i j} & \cdots & a_{i n}
\end{array}\right] \vec{e}_{j}=a_{i j}
$$

Since this is true for all $\mathrm{i} \leq \mathrm{m}$ and all $\mathrm{j} \leq \mathrm{n}, \mathrm{AI}_{\mathrm{n}}=\mathrm{A}$.
The proof of $\mathrm{I}_{\mathrm{m}} \mathrm{A}=\mathrm{A}$ is analogous-work it out!

Instead of AI_{n} and $\mathrm{I}_{\mathrm{m}} \mathrm{A}$ we often write AI and IA , respectively, since the size of the identity matrix is clear from the context: the sizes of A and I must be compatible for matrix multiplication.

Instead of AI_{n} and $\mathrm{I}_{\mathrm{m}} \mathrm{A}$ we often write AI and IA , respectively, since the size of the identity matrix is clear from the context: the sizes of A and I must be compatible for matrix multiplication.

Thus

$$
\mathrm{AI}=\mathrm{A} \quad \text { and } \quad \mathrm{IA}=\mathrm{A}
$$

which is why I is called an identity matrix - it is an identity for matrix multiplication.

Definition (Matrix Inverses)

Let A be an $n \times n$ matrix. Then B is an inverse of A if and only if $A B=I_{n}$ and $\mathrm{BA}=\mathrm{I}_{\mathrm{n}}$.

Definition (Matrix Inverses)

Let A be an $n \times n$ matrix. Then B is an inverse of A if and only if $A B=I_{n}$ and $\mathrm{BA}=\mathrm{I}_{\mathrm{n}}$.

Remark

Note that since A and I_{n} are both $\mathrm{n} \times \mathrm{n}, \mathrm{B}$ must also be an $\mathrm{n} \times \mathrm{n}$ matrix.

Definition (Matrix Inverses)

Let A be an $n \times n$ matrix. Then B is an inverse of A if and only if $A B=I_{n}$ and $\mathrm{BA}=\mathrm{I}_{\mathrm{n}}$.

Remark

Note that since A and I_{n} are both $\mathrm{n} \times \mathrm{n}, \mathrm{B}$ must also be an $\mathrm{n} \times \mathrm{n}$ matrix.

Example
Let $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{rr}-2 & 1 \\ 3 / 2 & -1 / 2\end{array}\right]$. Then

$$
\mathrm{AB}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \text { and } \quad \mathrm{BA}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

Therefore, B is an inverse of A.

Problem

Does every square matrix have an inverse?

Problem

Does every square matrix have an inverse?

Solution
No! Take e.g. the zero matrix \mathbf{O}_{n} (all entries of \mathbf{O}_{n} are equal to 0)

$$
\mathrm{AO}_{\mathrm{n}}=\mathrm{O}_{\mathrm{n}} \mathrm{~A}=\mathrm{O}_{\mathrm{n}}
$$

for all $\mathrm{n} \times \mathrm{n}$ matrices A :

Problem

Does every square matrix have an inverse?

Solution
No! Take e.g. the zero matrix \mathbf{O}_{n} (all entries of \mathbf{O}_{n} are equal to 0)

$$
\mathrm{AO}_{\mathrm{n}}=\mathrm{O}_{\mathrm{n}} \mathrm{~A}=\mathbf{O}_{\mathrm{n}}
$$

for all $\mathrm{n} \times \mathrm{n}$ matrices A : The (i, j)-entry of $\mathrm{O}_{\mathrm{n}} \mathrm{A}$ is equal to $\sum_{\mathrm{k}=1}^{\mathrm{n}} 0 \mathrm{a}_{\mathrm{kj}}=0$.

Problem

Does every square matrix have an inverse?

Solution
No! Take e.g. the zero matrix \mathbf{O}_{n} (all entries of \mathbf{O}_{n} are equal to 0)

$$
\mathrm{AO}_{\mathrm{n}}=\mathrm{O}_{\mathrm{n}} \mathrm{~A}=\mathbf{O}_{\mathrm{n}}
$$

for all $\mathrm{n} \times \mathrm{n}$ matrices A : The (i, j)-entry of $\mathrm{O}_{\mathrm{n}} \mathrm{A}$ is equal to $\sum_{\mathrm{k}=1}^{\mathrm{n}} 0 \mathrm{a}_{\mathrm{kj}}=0$.

Problem

Does every nonzero square matrix have an inverse?

Problem

Does the following matrix A have an inverse?

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]
$$

Problem

Does the following matrix A have an inverse?

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]
$$

Solution

No! To see this, suppose

$$
B=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

is an inverse of A .

Problem

Does the following matrix A have an inverse?

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]
$$

Solution
No! To see this, suppose

$$
B=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

is an inverse of A. Then

$$
A B=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{c} & \mathrm{~d} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right]
$$

which is never equal to I_{2}.

Problem

Does the following matrix A have an inverse?

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]
$$

Solution
No! To see this, suppose

$$
B=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

is an inverse of A. Then

$$
A B=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{c} & \mathrm{~d} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right]
$$

which is never equal to I_{2}. (Why?)

Theorem (Uniqueness of an Inverse)
If A is a square matrix and B and C are inverses of A , then $\mathrm{B}=\mathrm{C}$.

Theorem (Uniqueness of an Inverse)
If A is a square matrix and B and C are inverses of A , then $\mathrm{B}=\mathrm{C}$.

Proof.
Since B and C are inverses of $\mathrm{A}, \mathrm{AB}=\mathrm{I}=\mathrm{BA}$ and $\mathrm{AC}=\mathrm{I}=\mathrm{CA}$. Then

$$
\mathrm{C}=\mathrm{CI}=\mathrm{C}(\mathrm{AB})=\mathrm{CAB}
$$

and

$$
\mathrm{B}=\mathrm{IB}=(\mathrm{CA}) \mathrm{B}=\mathrm{CAB}
$$

so $\mathrm{B}=\mathrm{C}$.

Example (revisited)
For $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{rr}-2 & 1 \\ 3 / 2 & -1 / 2\end{array}\right]$, we saw that

$$
\mathrm{AB}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \text { and } \quad \mathrm{BA}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

The preceding theorem tells us that B is the inverse of A , rather than just an inverse of A.

Remark (notation)
Let A be a square matrix, i.e., an $\mathrm{n} \times \mathrm{n}$ matrix.

- The inverse of A , if it exists, is denoted A^{-1}, and

$$
\mathrm{AA}^{-1}=\mathrm{I}=\mathrm{A}^{-1} \mathrm{~A}
$$

Remark (notation)

Let A be a square matrix, i.e., an $\mathrm{n} \times \mathrm{n}$ matrix.
\downarrow The inverse of A , if it exists, is denoted A^{-1}, and

$$
\mathrm{AA}^{-1}=\mathrm{I}=\mathrm{A}^{-1} \mathrm{~A}
$$

- If A has an inverse, then we say that A is invertible.

The Identity and Inverse Matrices

Finding the Inverse of a Matrix

Properties of the Inverse

Inverse of Transformations

Finding the inverse of a 2×2 matrix

Finding the inverse of a 2×2 matrix

Example

Suppose that $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.

Finding the inverse of a 2×2 matrix

Example

Suppose that $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, then there is a formula for A^{-1} :

$$
\mathrm{A}^{-1}=\frac{1}{\mathrm{ad}-\mathrm{bc}}\left[\begin{array}{rr}
\mathrm{d} & -\mathrm{b} \\
-\mathrm{c} & \mathrm{a}
\end{array}\right] .
$$

Finding the inverse of a 2×2 matrix

Example

Suppose that $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, then there is a formula for A^{-1} :

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right] .
$$

This can easily be verified by computing the products AA^{-1} and $\mathrm{A}^{-1} \mathrm{~A}$.

Finding the inverse of a 2×2 matrix

Example

Suppose that $\mathrm{A}=\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right]$. If $\mathrm{ad}-\mathrm{bc} \neq 0$, then there is a formula for A^{-1} :

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right] .
$$

This can easily be verified by computing the products AA^{-1} and $\mathrm{A}^{-1} \mathrm{~A}$.

$$
\begin{aligned}
\mathrm{AA}^{-1} & =\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right] \\
& =\frac{1}{a d-b c}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]\right) \\
& =\frac{1}{a d-b c}\left[\begin{array}{cc}
a d-b c & 0 \\
0 & -b c+a d
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Finding the inverse of a 2×2 matrix

Example

Suppose that $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, then there is a formula for A^{-1} :

$$
\mathrm{A}^{-1}=\frac{1}{\mathrm{ad}-\mathrm{bc}}\left[\begin{array}{rr}
\mathrm{d} & -\mathrm{b} \\
-\mathrm{c} & \mathrm{a}
\end{array}\right] .
$$

This can easily be verified by computing the products AA^{-1} and $\mathrm{A}^{-1} \mathrm{~A}$.

$$
\begin{aligned}
\mathrm{AA}^{-1} & =\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right] \\
& =\frac{1}{a d-b c}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]\right) \\
& =\frac{1}{a d-b c}\left[\begin{array}{cc}
a d-b c & 0 \\
0 & -b c+a d
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Showing that $\mathrm{A}^{-1} \mathrm{~A}=\mathrm{I}_{2}$ is left as an exercise.

Remark

Here are some terminology related to this example:

1. Determinant:

$$
\operatorname{det}\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right):=\mathrm{ad}-\mathrm{cd}
$$

2. Adjugate:

$$
\operatorname{adj}\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right):=\left(\begin{array}{cc}
\mathrm{d} & -\mathrm{b} \\
-\mathrm{c} & \mathrm{a}
\end{array}\right)
$$

Problem

Suppose that A is any $\mathrm{n} \times \mathrm{n}$ matrix.

Problem

Suppose that A is any $\mathrm{n} \times \mathrm{n}$ matrix.

- How do we know whether or not A^{-1} exists?

Problem

Suppose that A is any $\mathrm{n} \times \mathrm{n}$ matrix.
\downarrow How do we know whether or not A^{-1} exists?

- If A^{-1} exists, how do we find it?

Problem

Suppose that A is any $\mathrm{n} \times \mathrm{n}$ matrix.
\downarrow How do we know whether or not A^{-1} exists?

- If A^{-1} exists, how do we find it?

Solution
The matrix inversion algorithm!

Problem

Suppose that A is any $\mathrm{n} \times \mathrm{n}$ matrix.
\downarrow How do we know whether or not A^{-1} exists?

- If A^{-1} exists, how do we find it?

Solution

The matrix inversion algorithm!

Although the formula for the inverse of a 2×2 matrix is quicker and easier to use than the matrix inversion algorithm, the general formula for the inverse an $\mathrm{n} \times \mathrm{n}$ matrix, $\mathrm{n} \geq 3$ (which we will see later), is more complicated and difficult to use than the matrix inversion algorithm. To find inverses of square matrices that are not 2×2, the matrix inversion algorithm is the most efficient method to use.

The Matrix Inversion Algorithm
Let A be an $\mathrm{n} \times \mathrm{n}$ matrix. To find A^{-1}, if it exists,
Step 1 take the $\mathrm{n} \times 2 \mathrm{n}$ matrix

$$
\left[\mathrm{A} \mid \mathrm{I}_{\mathrm{n}}\right]
$$

obtained by augmenting A with the $\mathrm{n} \times \mathrm{n}$ identity matrix, I_{n}.
Step 2 Perform elementary row operations to transform $\left[A \mid I_{n}\right]$ into a reduced row-echelon matrix.

The Matrix Inversion Algorithm
Let A be an $\mathrm{n} \times \mathrm{n}$ matrix. To find A^{-1}, if it exists,
Step 1 take the $\mathrm{n} \times 2 \mathrm{n}$ matrix

$$
\left[\mathrm{A} \mid \mathrm{I}_{\mathrm{n}}\right]
$$

obtained by augmenting A with the $\mathrm{n} \times \mathrm{n}$ identity matrix, I_{n}.
Step 2 Perform elementary row operations to transform $\left[A \mid I_{n}\right]$ into a reduced row-echelon matrix.

Theorem (Matrix Inverses)
Let A be an $\mathrm{n} \times \mathrm{n}$ matrix. Then the following conditions are equivalent.

1. A is invertible.
2. the reduced row-echelon form on A is I.
3. $\left[\mathrm{A} \mid \mathrm{I}_{\mathrm{n}}\right]$ can be transformed into $\left[\mathrm{I}_{\mathrm{n}} \mid \mathrm{A}^{-1}\right]$ using the Matrix Inversion Algorithm.

Problem

Find, if possible, the inverse of $\left[\begin{array}{rrr}1 & 0 & -1 \\ -2 & 1 & 3 \\ -1 & 1 & 2\end{array}\right]$.

Problem

Find, if possible, the inverse of $\left[\begin{array}{rrr}1 & 0 & -1 \\ -2 & 1 & 3 \\ -1 & 1 & 2\end{array}\right]$.

Solution

Using the matrix inversion algorithm

Problem

Find, if possible, the inverse of $\left[\begin{array}{rrr}1 & 0 & -1 \\ -2 & 1 & 3 \\ -1 & 1 & 2\end{array}\right]$.

Solution

Using the matrix inversion algorithm

$$
\left[\begin{array}{rrr|rrr}
1 & 0 & -1 & 1 & 0 & 0 \\
-2 & 1 & 3 & 0 & 1 & 0 \\
-1 & 1 & 2 & 0 & 0 & 1
\end{array}\right]
$$

Problem

Find, if possible, the inverse of $\left[\begin{array}{rrr}1 & 0 & -1 \\ -2 & 1 & 3 \\ -1 & 1 & 2\end{array}\right]$.

Solution

Using the matrix inversion algorithm

$$
\left[\begin{array}{rrr|rrr}
1 & 0 & -1 & 1 & 0 & 0 \\
-2 & 1 & 3 & 0 & 1 & 0 \\
-1 & 1 & 2 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}
1 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 1 & 2 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1
\end{array}\right]
$$

Problem

Find, if possible, the inverse of $\left[\begin{array}{rrr}1 & 0 & -1 \\ -2 & 1 & 3 \\ -1 & 1 & 2\end{array}\right]$.
Solution
Using the matrix inversion algorithm

$$
\left[\begin{array}{rrr|rrr}
1 & 0 & -1 & 1 & 0 & 0 \\
-2 & 1 & 3 & 0 & 1 & 0 \\
-1 & 1 & 2 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}
1 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 1 & 2 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1
\end{array}\right] \rightarrow+\left[\begin{array}{rrr|rrr}
1 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & -1 & -1 & 1
\end{array}\right] \rightarrow \text { (1) }
$$

From this, we see that A has no inverse.

Problem
Let $\mathrm{A}=\left[\begin{array}{rrr}3 & 1 & 2 \\ 1 & -1 & 3 \\ 1 & 2 & 4\end{array}\right]$. Find the inverse of A , if it exists.

Solution

Using the matrix inversion algorithm

Solution
Using the matrix inversion algorithm

$$
\begin{aligned}
& {[\mathrm{A} \mid \mathrm{I}]=\left[\begin{array}{rrr|rrr}
3 & 1 & 2 & 1 & 0 & 0 \\
1 & -1 & 3 & 0 & 1 & 0 \\
1 & 2 & 4 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}
1 & -1 & 3 & 0 & 1 & 0 \\
3 & 1 & 2 & 1 & 0 & 0 \\
1 & 2 & 4 & 0 & 0 & 1
\end{array}\right] } \\
& \rightarrow\left[\begin{array}{rrr|rrr}
1 & -1 & 3 & 0 & 1 & 0 \\
0 & 4 & -7 & 1 & -3 & 0 \\
0 & 3 & 1 & 0 & -1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrrrr}
1 & -1 & 3 & 0 & 1 & 0 \\
0 & 1 & -8 & 1 & -2 & -1 \\
0 & 3 & 1 & 0 & -1 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrr|rrr}
1 & 0 & -5 & 1 & -1 & -1 \\
0 & 1 & -8 & 1 & -2 & -1 \\
0 & 0 & 25 & -3 & 5 & 4
\end{array}\right] \rightarrow\left[\begin{array}{rrrrrr}
1 & 0 & -5 & 1 & -1 & -1 \\
0 & 1 & -8 & 1 & -2 & -1 \\
0 & 0 & 1 & -\frac{3}{25} & \frac{5}{25} & \frac{4}{25}
\end{array}\right] \\
& \rightarrow\left[\begin{array}{lll|rrr}
1 & 0 & 0 & \frac{10}{25} & 0 & -\frac{5}{25} \\
0 & 1 & 0 & \frac{1}{25} & -\frac{10}{25} & \frac{7}{25} \\
0 & 0 & 1 & -\frac{3}{25} & \frac{5}{25} & \frac{4}{25}
\end{array}\right]=\left[\mathrm{I} \mid \mathrm{A}^{-1}\right]
\end{aligned}
$$

Solution (continued)
Therefore, A^{-1} exists, and

$$
A^{-1}=\left[\begin{array}{rrr}
\frac{10}{25} & 0 & -\frac{5}{25} \\
\frac{1}{25} & -\frac{10}{25} & \frac{7}{25} \\
-\frac{3}{25} & \frac{5}{25} & \frac{4}{25}
\end{array}\right]=\frac{1}{25}\left[\begin{array}{rrr}
10 & 0 & -5 \\
1 & -10 & 7 \\
-3 & 5 & 4
\end{array}\right] .
$$

Solution (continued)
Therefore, A^{-1} exists, and

$$
A^{-1}=\left[\begin{array}{rrr}
\frac{10}{25} & 0 & -\frac{5}{25} \\
\frac{1}{25} & -\frac{10}{25} & \frac{7}{25} \\
-\frac{3}{25} & \frac{5}{25} & \frac{4}{25}
\end{array}\right]=\frac{1}{25}\left[\begin{array}{rrr}
10 & 0 & -5 \\
1 & -10 & 7 \\
-3 & 5 & 4
\end{array}\right] .
$$

Remark

It is always a good habit to check your answer by computing AA^{-1} and $\mathrm{A}^{-1} \mathrm{~A}$.

One can use matrix inverse to solve $A \vec{x}=\vec{b}$ when there are n linear equations in n variables, i.e., A is a square matrix.

One can use matrix inverse to solve $A \vec{x}=\vec{b}$ when there are n linear equations in n variables, i.e., A is a square matrix.

Example

The system of linear equations

$$
\begin{array}{r}
2 x-7 y=3 \\
5 x-18 y=8
\end{array}
$$

can be written in matrix form as $\mathrm{A} \overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{b}}$:

$$
\left[\begin{array}{rr}
2 & -7 \\
5 & -18
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{l}
3 \\
8
\end{array}\right]
$$

One can use matrix inverse to solve $A \vec{x}=\vec{b}$ when there are n linear equations in n variables, i.e., A is a square matrix.

Example

The system of linear equations

$$
\begin{array}{r}
2 x-7 y=3 \\
5 x-18 y=8
\end{array}
$$

can be written in matrix form as $\mathrm{A} \overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{b}}$:

$$
\left[\begin{array}{rr}
2 & -7 \\
5 & -18
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{l}
3 \\
8
\end{array}\right]
$$

You can check that $A^{-1}=\left[\begin{array}{rr}18 & -7 \\ 5 & -2\end{array}\right]$.

Example (continued)

Since A^{-1} exists and has the property that $\mathrm{A}^{-1} \mathrm{~A}=\mathrm{I}$, we obtain the following.

Example (continued)

Since A^{-1} exists and has the property that $A^{-1} A=I$, we obtain the following.

$$
\mathrm{A} \overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{b}}
$$

Example (continued)

Since A^{-1} exists and has the property that $\mathrm{A}^{-1} \mathrm{~A}=\mathrm{I}$, we obtain the following.

$$
\begin{aligned}
\mathrm{A} \overrightarrow{\mathrm{x}} & =\overrightarrow{\mathrm{b}} \\
\mathrm{~A}^{-1}(\mathrm{~A} \overrightarrow{\mathrm{x}}) & =\mathrm{A}^{-1} \overrightarrow{\mathrm{~b}}
\end{aligned}
$$

Example (continued)

Since A^{-1} exists and has the property that $\mathrm{A}^{-1} \mathrm{~A}=\mathrm{I}$, we obtain the following.

$$
\begin{aligned}
\mathrm{A} \overrightarrow{\mathrm{x}} & =\overrightarrow{\mathrm{b}} \\
\mathrm{~A}^{-1}(\mathrm{~A} \overrightarrow{\mathrm{x}}) & =\mathrm{A}^{-1} \overrightarrow{\mathrm{~b}} \\
\left(\mathrm{~A}^{-1} \mathrm{~A}\right) \overrightarrow{\mathrm{x}} & =\mathrm{A}^{-1} \overrightarrow{\mathrm{~b}}
\end{aligned}
$$

Example (continued)

Since A^{-1} exists and has the property that $\mathrm{A}^{-1} \mathrm{~A}=\mathrm{I}$, we obtain the following.

$$
\begin{aligned}
\mathrm{A} \overrightarrow{\mathrm{x}} & =\overrightarrow{\mathrm{b}} \\
\mathrm{~A}^{-1}(\mathrm{~A} \overrightarrow{\mathrm{x}}) & =\mathrm{A}^{-1} \overrightarrow{\mathrm{~b}} \\
\left(\mathrm{~A}^{-1} \mathrm{~A}\right) \overrightarrow{\mathrm{x}} & =\mathrm{A}^{-1} \overrightarrow{\mathrm{~b}} \\
\mathrm{I} \overrightarrow{\mathrm{x}} & =\mathrm{A}^{-1} \overrightarrow{\mathrm{~b}}
\end{aligned}
$$

Example (continued)

Since A^{-1} exists and has the property that $A^{-1} A=I$, we obtain the following.

$$
\begin{aligned}
\mathrm{A} \overrightarrow{\mathrm{x}} & =\overrightarrow{\mathrm{b}} \\
\mathrm{~A}^{-1}(\mathrm{~A} \overrightarrow{\mathrm{x}}) & =\mathrm{A}^{-1} \overrightarrow{\mathrm{~b}} \\
\left(\mathrm{~A}^{-1} \mathrm{~A}\right) \overrightarrow{\mathrm{x}} & =\mathrm{A}^{-1} \overrightarrow{\mathrm{~b}} \\
\mathrm{I} \overrightarrow{\mathrm{x}} & =\mathrm{A}^{-1} \overrightarrow{\mathrm{~b}} \\
\overrightarrow{\mathrm{x}} & =\mathrm{A}^{-1} \overrightarrow{\mathrm{~b}}
\end{aligned}
$$

Example (continued)
Since A^{-1} exists and has the property that $\mathrm{A}^{-1} \mathrm{~A}=\mathrm{I}$, we obtain the following.

$$
\begin{aligned}
\mathrm{A} \overrightarrow{\mathrm{x}} & =\overrightarrow{\mathrm{b}} \\
\mathrm{~A}^{-1}(\mathrm{~A} \overrightarrow{\mathrm{x}}) & =\mathrm{A}^{-1} \overrightarrow{\mathrm{~b}} \\
\left(\mathrm{~A}^{-1} \mathrm{~A}\right) \overrightarrow{\mathrm{x}} & =\mathrm{A}^{-1} \overrightarrow{\mathrm{~b}} \\
\mathrm{I} \overrightarrow{\mathrm{x}} & =\mathrm{A}^{-1} \overrightarrow{\mathrm{~b}} \\
\overrightarrow{\mathrm{x}} & =\mathrm{A}^{-1} \overrightarrow{\mathrm{~b}}
\end{aligned}
$$

i.e., $A \vec{x}=\vec{b}$ has the unique solution given by $\vec{x}=A^{-1} \vec{b}$.

Example (continued)
Since A^{-1} exists and has the property that $\mathrm{A}^{-1} \mathrm{~A}=\mathrm{I}$, we obtain the following.

$$
\begin{aligned}
\mathrm{A} \overrightarrow{\mathrm{x}} & =\overrightarrow{\mathrm{b}} \\
\mathrm{~A}^{-1}(\mathrm{~A} \overrightarrow{\mathrm{x}}) & =\mathrm{A}^{-1} \overrightarrow{\mathrm{~b}} \\
\left(\mathrm{~A}^{-1} \mathrm{~A}\right) \overrightarrow{\mathrm{x}} & =\mathrm{A}^{-1} \overrightarrow{\mathrm{~b}} \\
\mathrm{I} \overrightarrow{\mathrm{x}} & =\mathrm{A}^{-1} \overrightarrow{\mathrm{~b}} \\
\overrightarrow{\mathrm{x}} & =\mathrm{A}^{-1} \overrightarrow{\mathrm{~b}}
\end{aligned}
$$

i.e., $A \vec{x}=\vec{b}$ has the unique solution given by $\vec{x}=A^{-1} \vec{b}$. Therefore,

$$
\overrightarrow{\mathrm{x}}=\mathrm{A}^{-1}\left[\begin{array}{l}
3 \\
8
\end{array}\right]=\left[\begin{array}{rr}
18 & -7 \\
5 & -2
\end{array}\right]\left[\begin{array}{l}
3 \\
8
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-1
\end{array}\right]
$$

is the unique solution to the system.

Remark

The last example illustrates another method for solving a system of linear equations when the coefficient matrix is square and invertible.

Remark

The last example illustrates another method for solving a system of linear equations when the coefficient matrix is square and invertible. Unless that coefficient matrix is 2×2, this is generally NOT an efficient method for solving a system of linear equations.

Example

Let A, B and C be matrices, and suppose that A is invertible.

1. If $\mathrm{AB}=\mathrm{AC}$, then

Example

Let A, B and C be matrices, and suppose that A is invertible.

1. If $\mathrm{AB}=\mathrm{AC}$, then

$$
\mathrm{A}^{-1}(\mathrm{AB})=\mathrm{A}^{-1}(\mathrm{AC})
$$

Example

Let A, B and C be matrices, and suppose that A is invertible.

1. If $\mathrm{AB}=\mathrm{AC}$, then

$$
\begin{aligned}
& \mathrm{A}^{-1}(\mathrm{AB})=\mathrm{A}^{-1}(\mathrm{AC}) \\
& \left(\mathrm{A}^{-1} \mathrm{~A}\right) \mathrm{B}=\left(\mathrm{A}^{-1} \mathrm{~A}\right) \mathrm{C}
\end{aligned}
$$

Example

Let A, B and C be matrices, and suppose that A is invertible.

1. If $\mathrm{AB}=\mathrm{AC}$, then

$$
\begin{aligned}
\mathrm{A}^{-1}(\mathrm{AB}) & =\mathrm{A}^{-1}(\mathrm{AC}) \\
\left(\mathrm{A}^{-1} \mathrm{~A}\right) \mathrm{B} & =\left(\mathrm{A}^{-1} \mathrm{~A}\right) \mathrm{C} \\
\mathrm{IB} & =\mathrm{IC}
\end{aligned}
$$

Example

Let A, B and C be matrices, and suppose that A is invertible.

1. If $\mathrm{AB}=\mathrm{AC}$, then

$$
\begin{aligned}
\mathrm{A}^{-1}(\mathrm{AB}) & =\mathrm{A}^{-1}(\mathrm{AC}) \\
\left(\mathrm{A}^{-1} \mathrm{~A}\right) \mathrm{B} & =\left(\mathrm{A}^{-1} \mathrm{~A}\right) \mathrm{C} \\
\mathrm{IB} & =\mathrm{IC} \\
\mathrm{~B} & =\mathrm{C}
\end{aligned}
$$

Example

Let A, B and C be matrices, and suppose that A is invertible.

1. If $\mathrm{AB}=\mathrm{AC}$, then

$$
\begin{aligned}
\mathrm{A}^{-1}(\mathrm{AB}) & =\mathrm{A}^{-1}(\mathrm{AC}) \\
\left(\mathrm{A}^{-1} \mathrm{~A}\right) \mathrm{B} & =\left(\mathrm{A}^{-1} \mathrm{~A}\right) \mathrm{C} \\
\mathrm{IB} & =\mathrm{IC} \\
\mathrm{~B} & =\mathrm{C}
\end{aligned}
$$

2. If $\mathrm{BA}=\mathrm{CA}$, then

Example

Let A, B and C be matrices, and suppose that A is invertible.

1. If $\mathrm{AB}=\mathrm{AC}$, then

$$
\begin{aligned}
\mathrm{A}^{-1}(\mathrm{AB}) & =\mathrm{A}^{-1}(\mathrm{AC}) \\
\left(\mathrm{A}^{-1} \mathrm{~A}\right) \mathrm{B} & =\left(\mathrm{A}^{-1} \mathrm{~A}\right) \mathrm{C} \\
\mathrm{IB} & =\mathrm{IC} \\
\mathrm{~B} & =\mathrm{C}
\end{aligned}
$$

2. If $\mathrm{BA}=\mathrm{CA}$, then

$$
\begin{aligned}
(\mathrm{BA}) \mathrm{A}^{-1} & =(\mathrm{CA}) \mathrm{A}^{-1} \\
\mathrm{~B}\left(\mathrm{AA}^{-1}\right) & =\mathrm{C}\left(\mathrm{AA}^{-1}\right) \\
\mathrm{BI} & =\mathrm{CI} \\
\mathrm{~B} & =\mathrm{C}
\end{aligned}
$$

Example

Let A, B and C be matrices, and suppose that A is invertible.

1. If $\mathrm{AB}=\mathrm{AC}$, then

$$
\begin{aligned}
\mathrm{A}^{-1}(\mathrm{AB}) & =\mathrm{A}^{-1}(\mathrm{AC}) \\
\left(\mathrm{A}^{-1} \mathrm{~A}\right) \mathrm{B} & =\left(\mathrm{A}^{-1} \mathrm{~A}\right) \mathrm{C} \\
\mathrm{IB} & =\mathrm{IC} \\
\mathrm{~B} & =\mathrm{C}
\end{aligned}
$$

2. If $\mathrm{BA}=\mathrm{CA}$, then

$$
\begin{aligned}
(\mathrm{BA}) \mathrm{A}^{-1} & =(\mathrm{CA}) \mathrm{A}^{-1} \\
\mathrm{~B}\left(\mathrm{AA}^{-1}\right) & =\mathrm{C}\left(\mathrm{AA}^{-1}\right) \\
\mathrm{BI} & =\mathrm{CI} \\
\mathrm{~B} & =\mathrm{C}
\end{aligned}
$$

Problem
Can you find square matrices A, B and C for which $\mathrm{AB}=\mathrm{AC}$ but $\mathrm{B} \neq \mathrm{C}$?

The Identity and Inverse Matrices

Finding the Inverse of a Matrix

Properties of the Inverse

Inverse of Transformations

Properties of the Inverse

Properties of the Inverse

Example

Suppose A is an invertible matrix. What is the $\left(\mathrm{A}^{\mathrm{T}}\right)^{-1}$?

Properties of the Inverse

Example

Suppose A is an invertible matrix. What is the $\left(A^{T}\right)^{-1}$? We need to find:

$$
\mathrm{A}^{\mathrm{T}} ? ? ?=? ? ? \mathrm{~A}^{\mathrm{T}}=\mathrm{I}
$$

Properties of the Inverse

Example

Suppose A is an invertible matrix. What is the $\left(\mathrm{A}^{\mathrm{T}}\right)^{-1}$? We need to find:

$$
\mathrm{A}^{\mathrm{T}} ? ? ?=? ? ? \mathrm{~A}^{\mathrm{T}}=\mathrm{I} .
$$

Notice that

$$
\mathrm{A}^{\mathrm{T}}\left(\mathrm{~A}^{-1}\right)^{\mathrm{T}}=
$$

Properties of the Inverse

Example

Suppose A is an invertible matrix. What is the $\left(\mathrm{A}^{\mathrm{T}}\right)^{-1}$? We need to find:

$$
\mathrm{A}^{\mathrm{T}} ? ? ?=? ? ? \mathrm{~A}^{\mathrm{T}}=\mathrm{I}
$$

Notice that

$$
\mathrm{A}^{\mathrm{T}}\left(\mathrm{~A}^{-1}\right)^{\mathrm{T}}=\left(\mathrm{A}^{-1} \mathrm{~A}\right)^{\mathrm{T}}=
$$

Properties of the Inverse

Example

Suppose A is an invertible matrix. What is the $\left(\mathrm{A}^{\mathrm{T}}\right)^{-1}$? We need to find:

$$
\mathrm{A}^{\mathrm{T}} ? ? ?=? ? ? \mathrm{~A}^{\mathrm{T}}=\mathrm{I} .
$$

Notice that

$$
\mathrm{A}^{\mathrm{T}}\left(\mathrm{~A}^{-1}\right)^{\mathrm{T}}=\left(\mathrm{A}^{-1} \mathrm{~A}\right)^{\mathrm{T}}=\mathrm{I}^{\mathrm{T}}=
$$

Properties of the Inverse

Example

Suppose A is an invertible matrix. What is the $\left(\mathrm{A}^{\mathrm{T}}\right)^{-1}$? We need to find:

$$
\mathrm{A}^{\mathrm{T}} ? ? ?=? ? ? \mathrm{~A}^{\mathrm{T}}=\mathrm{I} .
$$

Notice that

$$
\mathrm{A}^{\mathrm{T}}\left(\mathrm{~A}^{-1}\right)^{\mathrm{T}}=\left(\mathrm{A}^{-1} \mathrm{~A}\right)^{\mathrm{T}}=\mathrm{I}^{\mathrm{T}}=\mathrm{I}
$$

and

$$
\left(\mathrm{A}^{-1}\right)^{\mathrm{T}} \mathrm{~A}^{\mathrm{T}}
$$

Properties of the Inverse

Example

Suppose A is an invertible matrix. What is the $\left(\mathrm{A}^{\mathrm{T}}\right)^{-1}$? We need to find:

$$
\mathrm{A}^{\mathrm{T}} ? ? ?=? ? ? \mathrm{~A}^{\mathrm{T}}=\mathrm{I} .
$$

Notice that

$$
\mathrm{A}^{\mathrm{T}}\left(\mathrm{~A}^{-1}\right)^{\mathrm{T}}=\left(\mathrm{A}^{-1} \mathrm{~A}\right)^{\mathrm{T}}=\mathrm{I}^{\mathrm{T}}=\mathrm{I}
$$

and

$$
\left(\mathrm{A}^{-1}\right)^{\mathrm{T}} \mathrm{~A}^{\mathrm{T}}=\left(\mathrm{AA}^{-1}\right)^{\mathrm{T}}
$$

Properties of the Inverse

Example

Suppose A is an invertible matrix. What is the $\left(\mathrm{A}^{\mathrm{T}}\right)^{-1}$? We need to find:

$$
\mathrm{A}^{\mathrm{T}} ? ? ?=? ? ? \mathrm{~A}^{\mathrm{T}}=\mathrm{I} .
$$

Notice that

$$
\mathrm{A}^{\mathrm{T}}\left(\mathrm{~A}^{-1}\right)^{\mathrm{T}}=\left(\mathrm{A}^{-1} \mathrm{~A}\right)^{\mathrm{T}}=\mathrm{I}^{\mathrm{T}}=\mathrm{I}
$$

and

$$
\left(\mathrm{A}^{-1}\right)^{\mathrm{T}} \mathrm{~A}^{\mathrm{T}}=\left(\mathrm{AA}^{-1}\right)^{\mathrm{T}}=\mathrm{I}^{\mathrm{T}}
$$

Properties of the Inverse

Example

Suppose A is an invertible matrix. What is the $\left(\mathrm{A}^{\mathrm{T}}\right)^{-1}$? We need to find:

$$
\mathrm{A}^{\mathrm{T}} ? ? ?=? ? ? \mathrm{~A}^{\mathrm{T}}=\mathrm{I} .
$$

Notice that

$$
A^{T}\left(A^{-1}\right)^{T}=\left(A^{-1} A\right)^{T}=I^{T}=I
$$

and

$$
\left(\mathrm{A}^{-1}\right)^{\mathrm{T}} \mathrm{~A}^{\mathrm{T}}=\left(\mathrm{AA}^{-1}\right)^{\mathrm{T}}=\mathrm{I}^{\mathrm{T}}=\mathrm{I}
$$

Hence, ??? $=\left(\mathrm{A}^{-1}\right)^{\mathrm{T}}$, i.e., $\left(\mathrm{A}^{\mathrm{T}}\right)^{-1}=\left(\mathrm{A}^{-1}\right)^{\mathrm{T}}$.

Properties of the Inverse

Example

Suppose A and B are invertible $\mathrm{n} \times \mathrm{n}$ matrices. What is $(\mathrm{AB})^{-1}$?

Properties of the Inverse

Example

Suppose A and B are invertible $\mathrm{n} \times \mathrm{n}$ matrices. What is $(\mathrm{AB})^{-1}$?
We need to find:

$$
(\mathrm{AB}) \text { ??? }=\text { ??? }(\mathrm{AB})=\mathrm{I} \text {. }
$$

Properties of the Inverse

Example

Suppose A and B are invertible $\mathrm{n} \times \mathrm{n}$ matrices. What is $(\mathrm{AB})^{-1}$?
We need to find:

$$
(\mathrm{AB}) ? ? ?=? ?(\mathrm{AB})=\mathrm{I} \text {. }
$$

Notice that

$$
(\mathrm{AB})\left(\mathrm{B}^{-1} \mathrm{~A}^{-1}\right)
$$

Properties of the Inverse

Example

Suppose A and B are invertible $\mathrm{n} \times \mathrm{n}$ matrices. What is $(\mathrm{AB})^{-1}$?
We need to find:

$$
(\mathrm{AB}) ? ? ?=? ?(\mathrm{AB})=\mathrm{I} \text {. }
$$

Notice that

$$
(\mathrm{AB})\left(\mathrm{B}^{-1} \mathrm{~A}^{-1}\right)=\mathrm{A}\left(\mathrm{BB}^{-1}\right) \mathrm{A}^{-1}
$$

Properties of the Inverse

Example

Suppose A and B are invertible $\mathrm{n} \times \mathrm{n}$ matrices. What is $(\mathrm{AB})^{-1}$?
We need to find:

$$
(\mathrm{AB}) ? ? ?=? ?(\mathrm{AB})=\mathrm{I} \text {. }
$$

Notice that

$$
(\mathrm{AB})\left(\mathrm{B}^{-1} \mathrm{~A}^{-1}\right)=\mathrm{A}\left(\mathrm{BB}^{-1}\right) \mathrm{A}^{-1}=\mathrm{AIA}^{-1}
$$

Properties of the Inverse

Example

Suppose A and B are invertible $\mathrm{n} \times \mathrm{n}$ matrices. What is $(\mathrm{AB})^{-1}$?
We need to find:

$$
(\mathrm{AB}) ? ? ?=? ? \text { ?? }(\mathrm{AB})=\mathrm{I} \text {. }
$$

Notice that

$$
(\mathrm{AB})\left(\mathrm{B}^{-1} \mathrm{~A}^{-1}\right)=\mathrm{A}\left(\mathrm{BB}^{-1}\right) \mathrm{A}^{-1}=\mathrm{AIA}^{-1}=\mathrm{AA}^{-1}
$$

Properties of the Inverse

Example

Suppose A and B are invertible $\mathrm{n} \times \mathrm{n}$ matrices. What is $(\mathrm{AB})^{-1}$?
We need to find:

$$
(\mathrm{AB}) ? ? ?=? ? ?(\mathrm{AB})=\mathrm{I} .
$$

Notice that

$$
(\mathrm{AB})\left(\mathrm{B}^{-1} \mathrm{~A}^{-1}\right)=\mathrm{A}\left(\mathrm{BB}^{-1}\right) \mathrm{A}^{-1}=\mathrm{AIA}^{-1}=\mathrm{AA}^{-1}=\mathrm{I}
$$

Properties of the Inverse

Example

Suppose A and B are invertible $\mathrm{n} \times \mathrm{n}$ matrices. What is $(\mathrm{AB})^{-1}$?
We need to find:

$$
(\mathrm{AB}) ? ? ?=? ? \text { ?? }(\mathrm{AB})=\mathrm{I} \text {. }
$$

Notice that

$$
(\mathrm{AB})\left(\mathrm{B}^{-1} \mathrm{~A}^{-1}\right)=\mathrm{A}\left(\mathrm{BB}^{-1}\right) \mathrm{A}^{-1}=\mathrm{AIA}^{-1}=\mathrm{AA}^{-1}=\mathrm{I}
$$

and

$$
\left(\mathrm{B}^{-1} \mathrm{~A}^{-1}\right)(\mathrm{AB})
$$

Properties of the Inverse

Example

Suppose A and B are invertible $\mathrm{n} \times \mathrm{n}$ matrices. What is $(\mathrm{AB})^{-1}$?
We need to find:

$$
(\mathrm{AB}) ? ? ?=? ? \text { ? }(\mathrm{AB})=\mathrm{I} \text {. }
$$

Notice that

$$
(\mathrm{AB})\left(\mathrm{B}^{-1} \mathrm{~A}^{-1}\right)=\mathrm{A}\left(\mathrm{BB}^{-1}\right) \mathrm{A}^{-1}=\mathrm{AIA}^{-1}=\mathrm{AA}^{-1}=\mathrm{I}
$$

and

$$
\left(\mathrm{B}^{-1} \mathrm{~A}^{-1}\right)(\mathrm{AB})=\mathrm{B}^{-1}\left(\mathrm{~A}^{-1} \mathrm{~A}\right) \mathrm{B}
$$

Properties of the Inverse

Example

Suppose A and B are invertible $\mathrm{n} \times \mathrm{n}$ matrices. What is $(\mathrm{AB})^{-1}$?
We need to find:

$$
(\mathrm{AB}) ? ? ?=? ? \text { ? }(\mathrm{AB})=\mathrm{I} \text {. }
$$

Notice that

$$
(\mathrm{AB})\left(\mathrm{B}^{-1} \mathrm{~A}^{-1}\right)=\mathrm{A}\left(\mathrm{BB}^{-1}\right) \mathrm{A}^{-1}=\mathrm{AIA}^{-1}=\mathrm{AA}^{-1}=\mathrm{I}
$$

and

$$
\left(\mathrm{B}^{-1} \mathrm{~A}^{-1}\right)(\mathrm{AB})=\mathrm{B}^{-1}\left(\mathrm{~A}^{-1} \mathrm{~A}\right) \mathrm{B}=\mathrm{B}^{-1} \mathrm{IB}
$$

Properties of the Inverse

Example

Suppose A and B are invertible $\mathrm{n} \times \mathrm{n}$ matrices. What is $(\mathrm{AB})^{-1}$?
We need to find:

$$
(\mathrm{AB}) ? ? ?=? ? \text { ? }(\mathrm{AB})=\mathrm{I} \text {. }
$$

Notice that

$$
(\mathrm{AB})\left(\mathrm{B}^{-1} \mathrm{~A}^{-1}\right)=\mathrm{A}\left(\mathrm{BB}^{-1}\right) \mathrm{A}^{-1}=\mathrm{AIA}^{-1}=\mathrm{AA}^{-1}=\mathrm{I}
$$

and

$$
\left(\mathrm{B}^{-1} \mathrm{~A}^{-1}\right)(\mathrm{AB})=\mathrm{B}^{-1}\left(\mathrm{~A}^{-1} \mathrm{~A}\right) \mathrm{B}=\mathrm{B}^{-1} \mathrm{IB}=\mathrm{B}^{-1} \mathrm{~B}
$$

Properties of the Inverse

Example

Suppose A and B are invertible $\mathrm{n} \times \mathrm{n}$ matrices. What is $(\mathrm{AB})^{-1}$?
We need to find:

$$
(\mathrm{AB}) ? ? ?=? ? \text { ?? }(\mathrm{AB})=\mathrm{I} \text {. }
$$

Notice that

$$
(\mathrm{AB})\left(\mathrm{B}^{-1} \mathrm{~A}^{-1}\right)=\mathrm{A}\left(\mathrm{BB}^{-1}\right) \mathrm{A}^{-1}=\mathrm{AIA}^{-1}=\mathrm{AA}^{-1}=\mathrm{I}
$$

and

$$
\left(\mathrm{B}^{-1} \mathrm{~A}^{-1}\right)(\mathrm{AB})=\mathrm{B}^{-1}\left(\mathrm{~A}^{-1} \mathrm{~A}\right) \mathrm{B}=\mathrm{B}^{-1} \mathrm{IB}=\mathrm{B}^{-1} \mathrm{~B}=\mathrm{I}
$$

Properties of the Inverse

Example

Suppose A and B are invertible $\mathrm{n} \times \mathrm{n}$ matrices. What is $(\mathrm{AB})^{-1}$?
We need to find:

$$
(\mathrm{AB}) ? ? ?=? ? \text { ?? }(\mathrm{AB})=\mathrm{I} \text {. }
$$

Notice that

$$
(\mathrm{AB})\left(\mathrm{B}^{-1} \mathrm{~A}^{-1}\right)=\mathrm{A}\left(\mathrm{BB}^{-1}\right) \mathrm{A}^{-1}=\mathrm{AIA}^{-1}=\mathrm{AA}^{-1}=\mathrm{I}
$$

and

$$
\left(\mathrm{B}^{-1} \mathrm{~A}^{-1}\right)(\mathrm{AB})=\mathrm{B}^{-1}\left(\mathrm{~A}^{-1} \mathrm{~A}\right) \mathrm{B}=\mathrm{B}^{-1} \mathrm{IB}=\mathrm{B}^{-1} \mathrm{~B}=\mathrm{I}
$$

Hence, ??? $=\mathrm{B}^{-1} \mathrm{~A}^{-1}$, i.e., $(\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{~A}^{-1}$.

The previous two examples prove the first two parts of the following theorem.

The previous two examples prove the first two parts of the following theorem.

Theorem (Properties of Inverses)

1. If A is an invertible matrix, then $\left(\mathrm{A}^{\mathrm{T}}\right)^{-1}=\left(\mathrm{A}^{-1}\right)^{\mathrm{T}}$.

The previous two examples prove the first two parts of the following theorem.

Theorem (Properties of Inverses)

1. If A is an invertible matrix, then $\left(\mathrm{A}^{\mathrm{T}}\right)^{-1}=\left(\mathrm{A}^{-1}\right)^{\mathrm{T}}$.
2. If A and B are invertible matrices, then $A B$ is invertible and

$$
(\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{~A}^{-1}
$$

The previous two examples prove the first two parts of the following theorem.

Theorem (Properties of Inverses)

1. If A is an invertible matrix, then $\left(\mathrm{A}^{\mathrm{T}}\right)^{-1}=\left(\mathrm{A}^{-1}\right)^{\mathrm{T}}$.
2. If A and B are invertible matrices, then AB is invertible and

$$
(\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{~A}^{-1} .
$$

3. If $A_{1}, A_{2}, \ldots, A_{k}$ are invertible, then $A_{1} A_{2} \cdots A_{k}$ is invertible and

$$
\left(\mathrm{A}_{1} \mathrm{~A}_{2} \cdots \mathrm{~A}_{\mathrm{k}}\right)^{-1}=\mathrm{A}_{\mathrm{k}}^{-1} \mathrm{~A}_{\mathrm{k}-1}^{-1} \cdots \mathrm{~A}_{2}^{-1} \mathrm{~A}_{1}^{-1} .
$$

Theorem (More Properties of Inverses)

1. I is invertible, and $\mathrm{I}^{-1}=\mathrm{I}$.

Theorem (More Properties of Inverses)

1. I is invertible, and $\mathrm{I}^{-1}=\mathrm{I}$.
2. If A is invertible, so is A^{-1}, and $\left(\mathrm{A}^{-1}\right)^{-1}=\mathrm{A}$.

Theorem (More Properties of Inverses)

1. I is invertible, and $\mathrm{I}^{-1}=\mathrm{I}$.
2. If A is invertible, so is A^{-1}, and $\left(\mathrm{A}^{-1}\right)^{-1}=\mathrm{A}$.
3. If A is invertible, so is A^{k}, and $\left(A^{k}\right)^{-1}=\left(A^{-1}\right)^{k}$. (A^{k} means A multiplied by itself k times)

Theorem (More Properties of Inverses)

1. I is invertible, and $\mathrm{I}^{-1}=\mathrm{I}$.
2. If A is invertible, so is A^{-1}, and $\left(\mathrm{A}^{-1}\right)^{-1}=\mathrm{A}$.
3. If A is invertible, so is A^{k}, and $\left(A^{k}\right)^{-1}=\left(A^{-1}\right)^{k}$. (A^{k} means A multiplied by itself k times)
4. If A is invertible and $\mathrm{p} \in \mathbb{R}$ is nonzero, then pA is invertible, and $(\mathrm{pA})^{-1}=\frac{1}{\mathrm{p}} \mathrm{A}^{-1}$.

Example

Given $\left(3 \mathrm{I}-\mathrm{A}^{\mathrm{T}}\right)^{-1}=2\left[\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right]$, we wish to find the matrix A .

Example

Given $\left(3 \mathrm{I}-\mathrm{A}^{\mathrm{T}}\right)^{-1}=2\left[\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right]$, we wish to find the matrix A. Taking inverses of both sides of the equation:

$$
3 \mathrm{I}-\mathrm{A}^{\mathrm{T}}=\left(2\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right]\right)^{-1}
$$

Example

Given $\left(3 \mathrm{I}-\mathrm{A}^{\mathrm{T}}\right)^{-1}=2\left[\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right]$, we wish to find the matrix A. Taking inverses of both sides of the equation:

$$
\begin{aligned}
3 \mathrm{I}-\mathrm{A}^{\mathrm{T}} & =\left(2\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right]\right)^{-1} \\
& =\frac{1}{2}\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right]^{-1}
\end{aligned}
$$

Example

Given $\left(3 \mathrm{I}-\mathrm{A}^{\mathrm{T}}\right)^{-1}=2\left[\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right]$, we wish to find the matrix A. Taking inverses of both sides of the equation:

$$
\begin{aligned}
3 \mathrm{I}-\mathrm{A}^{\mathrm{T}} & =\left(2\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right]\right)^{-1} \\
& =\frac{1}{2}\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right]^{-1} \\
& =\frac{1}{2}\left[\begin{array}{rr}
3 & -1 \\
-2 & 1
\end{array}\right]
\end{aligned}
$$

Example

Given $\left(3 \mathrm{I}-\mathrm{A}^{\mathrm{T}}\right)^{-1}=2\left[\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right]$, we wish to find the matrix A. Taking inverses of both sides of the equation:

$$
\begin{aligned}
3 \mathrm{I}-\mathrm{A}^{\mathrm{T}} & =\left(2\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right]\right)^{-1} \\
& =\frac{1}{2}\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right]^{-1} \\
& =\frac{1}{2}\left[\begin{array}{rr}
3 & -1 \\
-2 & 1
\end{array}\right] \\
& =\left[\begin{array}{rr}
\frac{3}{2} & -\frac{1}{2} \\
-1 & \frac{1}{2}
\end{array}\right]
\end{aligned}
$$

Example (continued)

$$
3 \mathrm{I}-\mathrm{A}^{\mathrm{T}}=\left[\begin{array}{rr}
\frac{3}{2} & -\frac{1}{2} \\
-1 & \frac{1}{2}
\end{array}\right]
$$

Example (continued)

$$
\begin{aligned}
3 \mathrm{I}-\mathrm{A}^{\mathrm{T}} & =\left[\begin{array}{rr}
\frac{3}{2} & -\frac{1}{2} \\
-1 & \frac{1}{2}
\end{array}\right] \\
-\mathrm{A}^{\mathrm{T}} & =\left[\begin{array}{rr}
\frac{3}{2} & -\frac{1}{2} \\
-1 & \frac{1}{2}
\end{array}\right]-3 \mathrm{I}
\end{aligned}
$$

Example (continued)

$$
\begin{aligned}
3 \mathrm{I}-\mathrm{A}^{\mathrm{T}} & =\left[\begin{array}{rr}
\frac{3}{2} & -\frac{1}{2} \\
-1 & \frac{1}{2}
\end{array}\right] \\
-\mathrm{A}^{\mathrm{T}} & =\left[\begin{array}{rr}
\frac{3}{2} & -\frac{1}{2} \\
-1 & \frac{1}{2}
\end{array}\right]-3 \mathrm{I} \\
-\mathrm{A}^{\mathrm{T}} & =\left[\begin{array}{rr}
\frac{3}{2} & -\frac{1}{2} \\
-1 & \frac{1}{2}
\end{array}\right]-\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right]
\end{aligned}
$$

Example (continued)

$$
\begin{aligned}
3 \mathrm{I}-\mathrm{A}^{\mathrm{T}} & =\left[\begin{array}{rr}
\frac{3}{2} & -\frac{1}{2} \\
-1 & \frac{1}{2}
\end{array}\right] \\
-\mathrm{A}^{\mathrm{T}} & =\left[\begin{array}{rr}
\frac{3}{2} & -\frac{1}{2} \\
-1 & \frac{1}{2}
\end{array}\right]-3 \mathrm{I} \\
-\mathrm{A}^{\mathrm{T}} & =\left[\begin{array}{rr}
\frac{3}{2} & -\frac{1}{2} \\
-1 & \frac{1}{2}
\end{array}\right]-\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right] \\
-\mathrm{A}^{\mathrm{T}} & =\left[\begin{array}{rr}
-\frac{3}{2} & -\frac{1}{2} \\
-1 & -\frac{5}{2}
\end{array}\right]
\end{aligned}
$$

Example (continued)

$$
\begin{aligned}
3 \mathrm{I}-\mathrm{A}^{\mathrm{T}} & =\left[\begin{array}{rr}
\frac{3}{2} & -\frac{1}{2} \\
-1 & \frac{1}{2}
\end{array}\right] \\
-\mathrm{A}^{\mathrm{T}} & =\left[\begin{array}{rr}
\frac{3}{2} & -\frac{1}{2} \\
-1 & \frac{1}{2}
\end{array}\right]-3 \mathrm{I} \\
-\mathrm{A}^{\mathrm{T}} & =\left[\begin{array}{rr}
\frac{3}{2} & -\frac{1}{2} \\
-1 & \frac{1}{2}
\end{array}\right]-\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right] \\
-\mathrm{A}^{\mathrm{T}} & =\left[\begin{array}{rr}
-\frac{3}{2} & -\frac{1}{2} \\
-1 & -\frac{5}{2}
\end{array}\right] \\
\mathrm{A} & =\left[\begin{array}{ll}
\frac{3}{2} & 1 \\
\frac{1}{2} & \frac{5}{2}
\end{array}\right]
\end{aligned}
$$

Problem

True or false? Justify your answer.
If $\mathrm{A}^{3}=4 \mathrm{I}$, then A is invertible.

Problem

True or false? Justify your answer.

$$
\text { If } \mathrm{A}^{3}=4 \mathrm{I} \text {, then } \mathrm{A} \text { is invertible. }
$$

Solution

To show A is invertible, We need to find:

$$
\mathrm{A} ? ? ?=? ? ? \mathrm{~A}=\mathrm{I} .
$$

Problem

True or false? Justify your answer.

$$
\text { If } \mathrm{A}^{3}=4 \mathrm{I} \text {, then } \mathrm{A} \text { is invertible. }
$$

Solution

To show A is invertible, We need to find:

$$
\mathrm{A} ? ? ?=? ? \mathrm{~A}=\mathrm{I} .
$$

Because $\mathrm{A}^{3}=4 \mathrm{I}$, we see that

$$
\frac{1}{4} \mathrm{~A}^{3}=\mathrm{I}
$$

Problem

True or false? Justify your answer.

$$
\text { If } \mathrm{A}^{3}=4 \mathrm{I} \text {, then } \mathrm{A} \text { is invertible. }
$$

Solution
To show A is invertible, We need to find:

$$
\mathrm{A} ? ? ?=? ? \mathrm{~A}=\mathrm{I} .
$$

Because $\mathrm{A}^{3}=4 \mathrm{I}$, we see that

$$
\frac{1}{4} \mathrm{~A}^{3}=\mathrm{I}
$$

SO

$$
\left(\frac{1}{4} \mathrm{~A}^{2}\right) \mathrm{A}=\mathrm{I} \quad \text { and }
$$

Problem

True or false? Justify your answer.

$$
\text { If } \mathrm{A}^{3}=4 \mathrm{I} \text {, then } \mathrm{A} \text { is invertible. }
$$

Solution

To show A is invertible, We need to find:

$$
\mathrm{A} ? ? ?=? ? ? \mathrm{~A}=\mathrm{I} .
$$

Because $\mathrm{A}^{3}=4 \mathrm{I}$, we see that

$$
\frac{1}{4} \mathrm{~A}^{3}=\mathrm{I}
$$

SO

$$
\left(\frac{1}{4} \mathrm{~A}^{2}\right) \mathrm{A}=\mathrm{I} \quad \text { and } \quad \mathrm{A}\left(\frac{1}{4} \mathrm{~A}^{2}\right)=\mathrm{I}
$$

Problem

True or false? Justify your answer.

$$
\text { If } \mathrm{A}^{3}=4 \mathrm{I} \text {, then } \mathrm{A} \text { is invertible. }
$$

Solution

To show A is invertible, We need to find:

$$
\mathrm{A} ? ? ?=? ? \mathrm{~A}=\mathrm{I} .
$$

Because $\mathrm{A}^{3}=4 \mathrm{I}$, we see that

$$
\frac{1}{4} \mathrm{~A}^{3}=\mathrm{I}
$$

so

$$
\left(\frac{1}{4} \mathrm{~A}^{2}\right) \mathrm{A}=\mathrm{I} \quad \text { and } \quad \mathrm{A}\left(\frac{1}{4} \mathrm{~A}^{2}\right)=\mathrm{I} .
$$

Therefore, A is invertible, and ??? $=\frac{1}{4} \mathrm{~A}^{2}$, i.e., $\mathrm{A}^{-1}=\frac{1}{4} \mathrm{~A}^{2}$.

Theorem (Inverse Theorem)
Let A be an $\mathrm{n} \times \mathrm{n}$ matrix, and let $\overrightarrow{\mathrm{x}}, \overrightarrow{\mathrm{b}}$ be $\mathrm{n} \times 1$ vectors. The following conditions are equivalent.

Theorem (Inverse Theorem)
Let A be an $\mathrm{n} \times \mathrm{n}$ matrix, and let $\overrightarrow{\mathrm{x}}, \overrightarrow{\mathrm{b}}$ be $\mathrm{n} \times 1$ vectors. The following conditions are equivalent.

1. A is invertible.
2. The rank of A is n .
3. The reduced row echelon form of A is I_{n}.
4. $\mathrm{A} \overrightarrow{\mathrm{x}}=\overrightarrow{0}$ has only the trivial solution, $\overrightarrow{\mathrm{x}}=\overrightarrow{0}$.
5. A can be transformed to I_{n} by elementary row operations.

Theorem (Inverse Theorem)
Let A be an $\mathrm{n} \times \mathrm{n}$ matrix, and let $\overrightarrow{\mathrm{x}}, \overrightarrow{\mathrm{b}}$ be $\mathrm{n} \times 1$ vectors. The following conditions are equivalent.

1. A is invertible.
2. The rank of A is n .
3. The reduced row echelon form of A is I_{n}.
4. $\mathrm{A} \overrightarrow{\mathrm{x}}=\overrightarrow{0}$ has only the trivial solution, $\overrightarrow{\mathrm{x}}=\overrightarrow{0}$.
5. A can be transformed to I_{n} by elementary row operations.
6. The system $A \vec{x}=\vec{b}$ has a unique solution \vec{x} for any choice of \vec{b}.

Theorem (Inverse Theorem)

Let A be an $\mathrm{n} \times \mathrm{n}$ matrix, and let $\overrightarrow{\mathrm{x}}, \overrightarrow{\mathrm{b}}$ be $\mathrm{n} \times 1$ vectors. The following conditions are equivalent.

1. A is invertible.
2. The rank of A is n .
3. The reduced row echelon form of A is I_{n}.
4. $\mathrm{A} \overrightarrow{\mathrm{x}}=\overrightarrow{0}$ has only the trivial solution, $\overrightarrow{\mathrm{x}}=\overrightarrow{0}$.
5. A can be transformed to I_{n} by elementary row operations.
6. The system $A \vec{x}=\vec{b}$ has a unique solution \vec{x} for any choice of \vec{b}.
7. The system $A \vec{x}=\vec{b}$ has at least one solution \vec{x} for any choice of \vec{b}.

Theorem (Inverse Theorem)

Let A be an $\mathrm{n} \times \mathrm{n}$ matrix, and let $\overrightarrow{\mathrm{x}}, \overrightarrow{\mathrm{b}}$ be $\mathrm{n} \times 1$ vectors. The following conditions are equivalent.

1. A is invertible.
2. The rank of A is n .
3. The reduced row echelon form of A is I_{n}.
4. $\mathrm{A} \overrightarrow{\mathrm{x}}=\overrightarrow{0}$ has only the trivial solution, $\overrightarrow{\mathrm{x}}=\overrightarrow{0}$.
5. A can be transformed to I_{n} by elementary row operations.
6. The system $A \vec{x}=\vec{b}$ has a unique solution \vec{x} for any choice of \vec{b}.
7. The system $A \vec{x}=\vec{b}$ has at least one solution \vec{x} for any choice of \vec{b}.
8. There exists an $\mathrm{n} \times \mathrm{n}$ matrix C with the property that $\mathrm{CA}=\mathrm{I}_{\mathrm{n}}$.

Theorem (Inverse Theorem)

Let A be an $\mathrm{n} \times \mathrm{n}$ matrix, and let $\overrightarrow{\mathrm{x}}, \overrightarrow{\mathrm{b}}$ be $\mathrm{n} \times 1$ vectors. The following conditions are equivalent.

1. A is invertible.
2. The rank of A is n .
3. The reduced row echelon form of A is I_{n}.
4. $\mathrm{A} \overrightarrow{\mathrm{x}}=\overrightarrow{0}$ has only the trivial solution, $\overrightarrow{\mathrm{x}}=\overrightarrow{0}$.
5. A can be transformed to I_{n} by elementary row operations.
6. The system $A \vec{x}=\vec{b}$ has a unique solution \vec{x} for any choice of \vec{b}.
7. The system $A \vec{x}=\vec{b}$ has at least one solution \vec{x} for any choice of \vec{b}.
8. There exists an $\mathrm{n} \times \mathrm{n}$ matrix C with the property that $\mathrm{CA}=\mathrm{I}_{\mathrm{n}}$.
9. There exists an $\mathrm{n} \times \mathrm{n}$ matrix C with the property that $\mathrm{AC}=\mathrm{I}_{\mathrm{n}}$.

$$
\begin{aligned}
& (1) \Leftrightarrow(2) \Leftrightarrow(3) \Leftrightarrow(4) \Leftrightarrow(5) \Leftrightarrow(6) \\
& \text { 1 } \\
& \text { (9) } \\
& \begin{array}{l}
\Uparrow \\
(8)
\end{array} \Leftarrow \quad \begin{array}{c}
\Downarrow \\
(7)
\end{array}
\end{aligned}
$$

Proof.
(1), (2), (4), (5) and (6) are all equivalent.

$$
\begin{align*}
& (1) \Leftrightarrow(2) \Leftrightarrow(3) \Leftrightarrow(4) \Leftrightarrow(5) \Leftrightarrow(6) \\
& \Uparrow \quad \Downarrow \tag{9}\\
& \text { (8) } \Leftarrow \tag{7}
\end{align*}
$$

Proof.
(1), (2), (4), (5) and (6) are all equivalent.
$(6) \Rightarrow(7)$ is clear. As for $(7) \Rightarrow(8)$, let \vec{c}_{j} be one of the solution of $A \vec{x}=\vec{e}_{j}$. The

$$
\mathrm{A}\left[\vec{c}_{1}, \cdots, \overrightarrow{\mathrm{c}}_{\mathrm{n}}\right]=\left[\overrightarrow{\mathrm{e}}_{1}, \cdots, \overrightarrow{\mathrm{e}}_{\mathrm{n}}\right]=\mathrm{I}
$$

Hence, (8) holds with $\mathrm{C}=\left[\overrightarrow{\mathrm{c}}_{1}, \cdots, \overrightarrow{\mathrm{c}}_{\mathrm{n}}\right]$.

$$
\begin{align*}
& (1) \Leftrightarrow(2) \Leftrightarrow(3) \Leftrightarrow(4) \Leftrightarrow(5) \Leftrightarrow(6) \\
& \text { 介 } \tag{7}\\
& \text { (8) } \Leftarrow \tag{9}
\end{align*}
$$

Proof.
(1), (2), (4), (5) and (6) are all equivalent.
$(6) \Rightarrow(7)$ is clear. As for $(7) \Rightarrow(8)$, let \vec{c}_{j} be one of the solution of $A \vec{x}=\vec{e}_{j}$. The

$$
\mathrm{A}\left[\overrightarrow{\mathrm{c}}_{1}, \cdots, \overrightarrow{\mathrm{c}}_{\mathrm{n}}\right]=\left[\overrightarrow{\mathrm{e}}_{1}, \cdots, \overrightarrow{\mathrm{e}}_{\mathrm{n}}\right]=\mathrm{I}
$$

Hence, (8) holds with $\mathrm{C}=\left[\vec{c}_{1}, \cdots, \overrightarrow{\mathrm{c}}_{\mathrm{n}}\right]$.

$$
(1) \Rightarrow(8) \text { and (9): Using } C=A^{-1} \text {. }
$$

$$
\begin{align*}
& (1) \Leftrightarrow(2) \Leftrightarrow(3) \Leftrightarrow(4) \Leftrightarrow(5) \Leftrightarrow(6) \\
& \text { 1 } \tag{7}\\
& \text { 介 } \\
& \text { (8) } \Leftarrow \tag{9}
\end{align*}
$$

Proof.
(1), (2), (4), (5) and (6) are all equivalent.
$(6) \Rightarrow(7)$ is clear. As for $(7) \Rightarrow(8)$, let \vec{c}_{j} be one of the solution of $A \vec{x}=\vec{e}_{j}$. The

$$
\mathrm{A}\left[\overrightarrow{\mathrm{c}}_{1}, \cdots, \overrightarrow{\mathrm{c}}_{\mathrm{n}}\right]=\left[\overrightarrow{\mathrm{e}}_{1}, \cdots, \overrightarrow{\mathrm{e}}_{\mathrm{n}}\right]=\mathrm{I}
$$

Hence, (8) holds with $\mathrm{C}=\left[\overrightarrow{\mathrm{c}}_{1}, \cdots, \overrightarrow{\mathrm{c}}_{\mathrm{n}}\right]$.
$(1) \Rightarrow(8)$ and (9): Using $\mathrm{C}=\mathrm{A}^{-1}$.
(8) \Rightarrow (4): Whenever \vec{x} is a sol. i.e., $A \vec{x}=\overrightarrow{0}$, then $\vec{x}=\mathrm{I} \overrightarrow{\mathrm{x}}=\mathrm{CA} \overrightarrow{\mathrm{x}}=\mathrm{C} \overrightarrow{0}=\overrightarrow{0}$. Hence, $\overrightarrow{0}$ is the only solution. (4) holds true.

$$
\begin{align*}
& (1) \Leftrightarrow(2) \Leftrightarrow(3) \Leftrightarrow(4) \Leftrightarrow(5) \Leftrightarrow(6) \\
& \text { I } \tag{9}\\
& \Uparrow \quad \Downarrow \\
& \text { (8) } \Leftarrow \tag{7}
\end{align*}
$$

Proof.
(1), (2), (4), (5) and (6) are all equivalent.
$(6) \Rightarrow(7)$ is clear. As for $(7) \Rightarrow(8)$, let \vec{c}_{j} be one of the solution of $A \vec{x}=\vec{e}_{j}$. The

$$
\mathrm{A}\left[\vec{c}_{1}, \cdots, \overrightarrow{\mathrm{c}}_{\mathrm{n}}\right]=\left[\overrightarrow{\mathrm{e}}_{1}, \cdots, \vec{e}_{\mathrm{n}}\right]=\mathrm{I}
$$

Hence, (8) holds with $\mathrm{C}=\left[\overrightarrow{\mathrm{c}}_{1}, \cdots, \overrightarrow{\mathrm{c}}_{\mathrm{n}}\right]$.
$(1) \Rightarrow(8)$ and (9): Using $\mathrm{C}=\mathrm{A}^{-1}$.
(8) \Rightarrow (4): Whenever \vec{x} is a sol. i.e., $A \vec{x}=\overrightarrow{0}$, then $\vec{x}=\mathrm{I} \overrightarrow{\mathrm{x}}=\mathrm{CA} \overrightarrow{\mathrm{x}}=\mathrm{C} \overrightarrow{0}=\overrightarrow{0}$. Hence, $\overrightarrow{0}$ is the only solution. (4) holds true.
$(9) \Rightarrow(1)$: By reversing the roles of A and C and apply (8) to see that C is invertible. Thus A is the inverse of C , and hence A is itself invertible.

Corollary
If A and B are $\mathrm{n} \times \mathrm{n}$ matrices such that $\mathrm{AB}=\mathrm{I}$, then $\mathrm{BA}=\mathrm{I}$. Furthermore, A and B are invertible, with $\mathrm{B}=\mathrm{A}^{-1}$ and $\mathrm{A}=\mathrm{B}^{-1}$.

Corollary
If A and B are $\mathrm{n} \times \mathrm{n}$ matrices such that $\mathrm{AB}=\mathrm{I}$, then $\mathrm{BA}=\mathrm{I}$. Furthermore, A and B are invertible, with $\mathrm{B}=\mathrm{A}^{-1}$ and $\mathrm{A}=\mathrm{B}^{-1}$.

Corollary
If A and B are $\mathrm{n} \times \mathrm{n}$ matrices such that $\mathrm{AB}=\mathrm{I}$, then $\mathrm{BA}=\mathrm{I}$. Furthermore, A and B are invertible, with $B=A^{-1}$ and $A=B^{-1}$.

Remark

Important Fact In Corollary, it is essential that the matrices be square.

Theorem
If A and B are matrices such that $\mathrm{AB}=\mathrm{I}$ and $\mathrm{BA}=\mathrm{I}$, then A and B are square matrices (of the same size).

Example
Let $A=\left[\begin{array}{rrr}1 & 1 & 0 \\ -1 & 4 & 1\end{array}\right] \quad$ and $\quad B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 1 & 1\end{array}\right]$.

Example

$$
\begin{gathered}
\text { Let } \mathrm{A}=\left[\begin{array}{rrr}
1 & 1 & 0 \\
-1 & 4 & 1
\end{array}\right] \text { and } \mathrm{B}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
1 & 1
\end{array}\right] . \text { Then } \\
\mathrm{AB}=\left[\begin{array}{rrr}
1 & 1 & 0 \\
-1 & 4 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
1 & 1
\end{array}\right]
\end{gathered}
$$

Example

$$
\begin{aligned}
& \text { Let } \mathrm{A}=\left[\begin{array}{rrr}
1 & 1 & 0 \\
-1 & 4 & 1
\end{array}\right] \text { and } \mathrm{B}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
1 & 1
\end{array}\right] \text {. Then } \\
& \mathrm{AB}=\left[\begin{array}{rrr}
1 & 1 & 0 \\
-1 & 4 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\mathrm{I}_{2}
\end{aligned}
$$

Example

$$
\begin{gathered}
\text { Let } \mathrm{A}=\left[\begin{array}{rrr}
1 & 1 & 0 \\
-1 & 4 & 1
\end{array}\right] \text { and } \mathrm{B}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
1 & 1
\end{array}\right] \text {. Then } \\
\mathrm{AB}=\left[\begin{array}{rrr}
1 & 1 & 0 \\
-1 & 4 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\mathrm{I}_{2}
\end{gathered}
$$

and

$$
\mathrm{BA}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 1 & 0 \\
-1 & 4 & 1
\end{array}\right]
$$

Example

$$
\begin{gathered}
\text { Let } \mathrm{A}=\left[\begin{array}{rrr}
1 & 1 & 0 \\
-1 & 4 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
1 & 1
\end{array}\right] \text {. Then } \\
\mathrm{AB}=\left[\begin{array}{rrr}
1 & 1 & 0 \\
-1 & 4 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\mathrm{I}_{2}
\end{gathered}
$$

and

$$
\mathrm{BA}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 1 & 0 \\
-1 & 4 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 0 \\
0 & 5 & 1
\end{array}\right] \neq \mathrm{I}_{3} .
$$

Example

$$
\begin{aligned}
& \text { Let } \mathrm{A}=\left[\begin{array}{rrr}
1 & 1 & 0 \\
-1 & 4 & 1
\end{array}\right] \quad \text { and } \quad \mathrm{B}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
1 & 1
\end{array}\right] \text {. Then } \\
& \mathrm{AB}=\left[\begin{array}{rrr}
1 & 1 & 0 \\
-1 & 4 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\mathrm{I}_{2}
\end{aligned}
$$

and

$$
\mathrm{BA}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 1 & 0 \\
-1 & 4 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 0 \\
0 & 5 & 1
\end{array}\right] \neq \mathrm{I}_{3} .
$$

Remark

This example illustrates why "an inverse" of a non-square matrix doesn't make sense. If A is $\mathrm{m} \times \mathrm{n}$ and B is $\mathrm{n} \times \mathrm{m}$, where $\mathrm{m} \neq \mathrm{n}$, then even if $\mathrm{AB}=\mathrm{I}$, it will never be the case that $\mathrm{BA}=\mathrm{I}$.

The Identity and Inverse Matrices

Finding the Inverse of a Matrix

Properties of the Inverse

Inverse of Transformations

Inverse of Transformations

Inverse of Transformations

Definition

Suppose $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{n}}$ and $\mathrm{S}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{n}}$ are transformations such that for each $\overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}}$,

Inverse of Transformations

Definition

Suppose $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{n}}$ and $\mathrm{S}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{n}}$ are transformations such that for each $\overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}}$,

$$
(S \circ T)(\vec{x})=\vec{x} \quad \text { and } \quad(T \circ S)(\vec{x})=\vec{x} .
$$

Inverse of Transformations

Definition

Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\mathrm{n}}$ and $\mathrm{S}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{n}}$ are transformations such that for each $\overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}}$,

$$
(S \circ T)(\vec{x})=\vec{x} \quad \text { and } \quad(T \circ S)(\vec{x})=\vec{x} .
$$

Then T and S are invertible transformations;

Inverse of Transformations

Definition

Suppose $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{n}}$ and $\mathrm{S}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{n}}$ are transformations such that for each $\overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}}$,

$$
(S \circ T)(\vec{x})=\vec{x} \quad \text { and } \quad(T \circ S)(\vec{x})=\vec{x} .
$$

Then T and S are invertible transformations; S is called an inverse of T ,

Inverse of Transformations

Definition

Suppose $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{n}}$ and $\mathrm{S}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{n}}$ are transformations such that for each $\overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}}$,

$$
(S \circ T)(\vec{x})=\vec{x} \quad \text { and } \quad(T \circ S)(\vec{x})=\vec{x} .
$$

Then T and S are invertible transformations; S is called an inverse of T , and T is called an inverse of S . (Geometrically, S reverses the action of T , and T reverses the action of S.)

Inverse of Transformations

Definition

Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\mathrm{n}}$ and $\mathrm{S}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{n}}$ are transformations such that for each $\vec{x} \in \mathbb{R}^{\mathrm{n}}$,

$$
(S \circ T)(\vec{x})=\vec{x} \quad \text { and } \quad(T \circ S)(\vec{x})=\vec{x} .
$$

Then T and S are invertible transformations; S is called an inverse of T , and T is called an inverse of S . (Geometrically, S reverses the action of T , and T reverses the action of S.)

Theorem
Let $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{n}}$ be a matrix transformation induced by matrix A . Then we have:

1. A is invertible if and only if T has an inverse.
2. In the case where T has an inverse, the inverse is unique and is denoted T^{-1}.
3. Furthermore, $T^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is induced by the matrix A^{-1}.

Fundamental Identities relating T and T^{-1}

1. $\mathrm{T}^{-1} \circ \mathrm{~T}=1_{\mathbb{R}^{n}}$
2. $\mathrm{T} \circ \mathrm{T}^{-1}=1_{\mathbb{R}^{\mathrm{n}}}$

Example

Let $\mathrm{T}: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$ be a transformation given by

$$
\mathrm{T}\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{x}+\mathrm{y} \\
\mathrm{y}
\end{array}\right]
$$

Then T is a linear transformation induced by $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.

Example

Let $\mathrm{T}: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$ be a transformation given by

$$
\mathrm{T}\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{x}+\mathrm{y} \\
\mathrm{y}
\end{array}\right]
$$

Then T is a linear transformation induced by $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.
Notice that the matrix A is invertible. Therefore the transformation T has an inverse, T^{-1}, induced by

$$
A^{-1}=\left[\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right]
$$

Example (continued)
Consider the action of T and T^{-1} :

Example (continued)
Consider the action of T and T^{-1} :

$$
\mathrm{T}\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{x}+\mathrm{y} \\
\mathrm{y}
\end{array}\right]
$$

Example (continued)
Consider the action of T and T^{-1} :

$$
\begin{gathered}
T\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x+y \\
y
\end{array}\right] ; \\
T^{-1}\left[\begin{array}{c}
x+y \\
y
\end{array}\right]=\left[\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
x+y \\
y
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right] .
\end{gathered}
$$

Example (continued)
Consider the action of T and T^{-1} :

$$
\begin{gathered}
T\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x+y \\
y
\end{array}\right] ; \\
T^{-1}\left[\begin{array}{c}
x+y \\
y
\end{array}\right]=\left[\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
x+y \\
y
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right] .
\end{gathered}
$$

Therefore,

$$
\mathrm{T}^{-1}\left(\mathrm{~T}\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]\right)=\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]
$$

